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Abstract  

For atomistic scale-resolving simulations of peptide diffusion, which are representative of 

molecular sorting in micro-fluidic device, a hybrid Fluctuating Hydrodynamics - Molecular 

Dynamics (FH/MD) model is implemented based on the two-phase flow analogy framework. 

Thanks to the used framework, in comparison with existing simulations in the literature, the 

suggested model captures inter-atomic forces between the peptides and the surrounding shell of 

water atoms at atomistic resolution while concurrently taking into account the non-uniform flow 

effect. In comparison with previous applications of the hybrid two-phase flow analogy method, 

multiple moving atomic-resolution zones are implemented for the first time here. The moving 

zones comprise one and two peptides solvated in water with a Poiseuille flow applied, where each 

diffusing peptide and the surrounding water shell are dynamically resolved. The models are 

validated in comparison with the pure all-atom molecular dynamics simulations for the no flow 

case and then used to investigate how the flow rate and the starting location of peptides in the 

parabolic flow profile affect their lateral migration over a range of flow Reynolds numbers. It is 

estimated that for the Poiseuille flows considered, the FH/MD model is 2 to 20 times faster in 
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comparison with the conventional all-atom non-equilibrium molecular dynamics simulations. 

 

1. Introduction 

In the nearest future, micro- and nano-fluidic devices are likely to revolutionise techniques 

used for multiphase flow analysis, sensor design, and molecular and cellular sorting. In comparison 

with traditional bench-scale systems, microfluidic devices are especially advantageous because of 

their low fabrication costs, less material and reagent consumption, improved performance, reduced 

measurement time, and higher processing speed [1, 2]. In biomedical sciences, microfluidic sorting 

techniques allow one to separate small concentrations of particles in multi-phase solutions in 

accordance with mechanical properties such as the particle size, shape and deformability. For 

example, [3] showed how a peptide solution can be cleaned from initially present bacteria and 

blood cells by filtering it out through a microchannel of a micro-fluidic device at a controlled flow 

rate. As another example, [4] shows how a micro-fluidic device can efficiently replace the 

labour-intensive manual cell staining and washing. The applied technology is based on the particle 

sorting that enables the cell to migrate from the suspension to the reagent stream once the two 

flows are put in contact in a specially designed microchannel. Importantly, one feature in common 

for many micro-fluidic technologies is a precise control of the particle diffusion by inducing a 

shear flow gradient leading to lateral migration of the cells and molecules being sorted. 

Flow-induced particle diffusion in conventional suspensions, such as where the particle 

diameter reaches a sub-millimeter size while the width of the flow channel is in the order of a few 

millimeters, has been widely investigated using continuum mechanics approaches since 1960s [5]. 

The existing mathematical models of diffusion in conventional suspensions can be cast into two 

categories: diffusive flux and suspension balance methods. Both of them are based on 

approximations of continuum hydrodynamics effects. In diffusive flux methods, the particle 

diffusion is modelled as a process dependent on some effective bulk flow velocity, viscosity and 

concentration gradient [6]. In suspension balance methods, the stress exerted from the flow on a 

particle is expressed via an empirical constitutive relation and the transport equations are solved 

by rheological models [7]. Significant efforts were devoted to refining and improving the 

semi-empirical particle diffusion models in order to quantitatively predict the particle migration 

process and concentration [8-13]. 
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In comparison with conventional suspensions, the particles used in many micro- and 

nano-fluidic applications, such as molecules, are smaller than 100 nm where the Brownian motion 

is essential. To model such systems, mesoscopic methods have been proposed in the literature 

such as the Eulerian-Lagrangian model [14, 15], where particles are treated as a discrete 

Lagrangian phase suspended in a continuum Eulerian fluid. The particles’ motion satisfies 

Newton’s second law, while the coupling between the fluid and the particles is modelled by 

including the sources term in the fluid equations. The latter include both the deterministic and the 

random Brownian force. Models of this type allow capturing some of the molecular diffusion 

effects. For example, the enhanced heat transfer of Alumina-water solution in comparison with the 

pure water was simulated in [16], which was attributed to the lateral migration of the Alumina 

particles. The model included both the Brownian and the temperature gradient-based 

(thermophoretic) force effects. Despite the success of mesoscopic methods, the force fields they use 

(such as the ones based on statistical modelling approaches) are applicable for relatively large 

particles, and their application to nanoscale particle problems is debatable. For example, van der 

Waals and electrostatic forces emerging at the micro- and nanoscale are not resolved in the 

mesoscopic models despite their importance for particle transport in micro-fluidic devices [17, 18]. 

Although the van der Waals and electrostatic forces had been taken into account in the lattice 

Boltzmann method for polymer chain simulations [19, 20], this coarse-grain modelling missed 

atomistic details at the interatomic level. Molecular Dynamics (MD) simulations provide the 

description of molecular diffusion processes at the microscale resolution level. However, this 

resolution comes at a high computational cost especially when macroscopic flow effects need to 

be taken into account. So far only few studies have focused on the modeling of particle diffusion in 

MD simulations. For instance, MD was used in [21] to investigate the dispersion of copper (Cu) 

nanoparticles in liquid argon in a nano-channel under rather high flow velocity strain rates, the 

particle transport was directly simulated in both the stream-wise and transverse flow directions. The 

particle motion in the transverse directions appeared to be completely Brownian while no lateral 

migration was reported in the shear direction. Notably, simulations of the flow effect on molecular 

diffusion are typically performed with Non-Equilibrium MD (NEMD) methods, which require 

several orders of magnitude higher flow rates in comparison with the experimental conditions in 

order to accelerate the statistical convergence of the MD solution [21, 22]. This explains the 
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difficulty of mimicking relevant molecular diffusion regime typical of micro-fluidic devices. To the 

best knowledge of the authors, no pure all-atom MD method has been applied to simulate the lateral 

migration of nano-size particles. 

On the other hand, the migration of nano-scale particles in micro-fluidic devices can be 

modelled by hybrid multiscale methods, which retain the all-atom resolution in a small vicinity of 

the particle, while representing the rest of the fluid by much more computationally efficient 

macroscopic models based on continuum mechanics. For example, Domain Decomposition and 

Heterogeneous Multiscale Methods (DDM and HMM) [23-25] can be used to establish the ‘hand 

shaking’ between the MD particles and the continuum fluid dynamics (CFD) representation of the 

same liquid.  

HMM typically embeds a micro model described by an interaction potential between discrete 

particles in the nodes of a uniform Cartesian grid that covers the entire macroscopic simulation 

domain where Navier-Stokes (NS) equations are solved. Within this approach, a macroscopic 

solution is used to enforce a prescribed strain rate or a mass flux at the boundaries of the 

microscopic model. The same stresses are then obtained by averaging the microscopic solution in 

order to feed them back to the momentum component of the Navier-Stokes equations at the next 

iteration step [23, 25]. A further advancement of HMM, the so-called internal-flow multiscale 

method (IMM) was developed, where the microscopic model does not necessary collocate with a 

grid node of the continuum solver. Both methods have been successfully applied to simulate flow in 

carbon nanotubes, flow in axially-periodic converging/diverging nano-channels, and flow through 

membranes [23, 25, 26]. However, so far neither of these methods have been extended to the 

modelling of molecular diffusion of nano-size particles. This can be attributed to the fact that the 

location of the microscopic part of both the HMM and IMM models is fixed with respect to the 

Eulerian grid thereby making it difficult to capture the three-dimensional trajectory of atomistic 

particles of interest concurrently with the update of the macroscopic part of the solution. 

On the DDM front, the coupling of MD equations with Computational Fluid Dynamics was 

pioneered by O’Connell and Thompson for the Lennard-Jones fluid [27]. In the original work, the 

CFD model utilised the solution of steady Navier-Stokes equations, whereas further investigations 

used a more advanced Landau and Lifshitz Fluctuating Hydrodynamics (LL-FH) model [28], which 

not only satisfies the macroscopic fluid dynamics solution but also preserves statistical variances of 
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thermal density and velocity fluctuations due to the Brownian motion [29-31]. Depending on how 

the information is transferred between the MD and CFD regions, the domain decomposition method 

can be classed into flux coupling and state coupling schemes. In the flux coupling scheme, the 

momentum and mass fluxes of the non-overlapping MD and CFD regions are exchanged via a 

boundary condition at the interface to preserve the corresponding conservation laws. It is 

straightforward to reconstruct the flux from MD zone to CFD zone by averaging the microscopic 

solution, however, the opposite in non-trivial [32, 33]. Alternatively, in the state coupling schemes, 

a finite overlap region is used between the MD and CFD zones. In the overlap region, macroscopic 

fluxes of mass and momentum are reconstructed and the particle equations of motion are modified 

to include the macroscopic forcing effect [27, 34]. The finite overlap region allows for a smoother 

transition between the particle dynamics and continuum in comparison with the flux coupling 

method using some interpolation parameter[27, 34]. The accuracy maybe further improved by 

incorporation of multi-resolution particle models [35, 36]. Nevertheless, due to the complexity of 

multi-resolution methods of this sort they have not been extended to particle diffusion modelling 

yet. 

The current work follows the hybrid modelling approach developed in [37-40]. This model is 

of state-variable coupling type where the macroscopic and the microscopic parts are regarded as 

two nominal “phases” of the chemical substance, which are coupled by the conservation laws of 

mass and momenta. One phase stands for a continuum mechanics representation and the other 

phase stands for a discrete atomistic phase representation; the concentration of the atomistic phase 

is a user-defined function that determines the multiscale model resolution. The continuum phase is 

governed by the equations of Landau and Lifshitz Fluctuating Hydrodynamics-type. In order to 

avoid artificial phase separation, forcing terms are introduced in the MD particle equations, which 

are accounted for in the macroscopic flow equations to preserve the conservation laws of mass and 

momentum of the two-phase mixture. In [41-43] it was shown that, when implemented in 

GROMACS [44], a simplified one-way coupled version of the original method, which accounts 

for the flow effect on microscopic particles, is sufficiently accurate for simulations of a wide range 

of problems such as molecular diffusion [41, 42, 45], oscillations of a PCV2 virus capsid in water 

in equilibrium conditions [42, 43], and the interaction of nano-confined water with material 

surfaces of an Atomic Force Microscope [46]. 
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In the current work, this hybrid multiscale method is applied to simulate diffusion of peptides 

in water under Poiseuille flow conditions. The goal of the simulations is to investigate the effect of 

parameters, which could be controlled in a micro-fluidic experiment, such as the flow Reynolds 

number and the initial location where peptides are introduced in the flow, on the lateral migration 

process.  

The paper is organised as follows. The hybrid multiscale method based on the two-phase 

analogy model is summarised in Section 2.1 and its suggested modification to simulate multiple 

MD zones locked to the centres of mass of moving molecules of interest in a Poiseuille flow is 

presented in Section 2.2. Numerical simulation results are presented and discussed in Section 3. 

 

 

2. Computational methodology 

2.1 The two-phase flow analogy method for concurrent multi-resolution simulations from 

continuum to atomistic scales 

In the framework of the hybrid continuum-atomistic model [40-42], the large-scale 

continuum and the small-scale discrete particles representation of same liquid are considered as 

“phases” of a nominally two-phase liquid. The phases satisfy conservation laws of mass and 

momentum and their concentrations are 0 ≤ s ≤ 1 and 0 ≤ 1 − s ≤ 1 for the continuum phase 

and for the atomistic phase, respectively. The concentration is a user-defined function that 

determines the model resolution – from atomistic (s=0) to continuum (s=1). This function 

naturally comes in the conservation laws for mass and momentum of the continuum phase: 

𝛿𝑡(𝑠𝑚) + ∑ (𝑠𝜌�̃�)

𝛾=1,6

𝑑𝒏𝑟𝛿𝑡 = 𝛿𝑡𝐽
𝜌
, (1) 

𝛿𝑡(𝑠𝑚𝑢𝑖) + ∑ (𝑠𝜌𝑢𝑖�̃�)𝑑𝐧
𝑟𝛿𝑡

𝛾=1,6

= 𝑠 ∑ ∑ (𝛱𝑖𝑗 + 𝛱′𝑖𝑗)

𝛾=1,6𝑗=1,3

𝑑n𝑗
𝛾
𝛿𝑡 + 𝛿𝑡𝐽𝑖

𝐮, 𝑖 = 1,2,3 (2) 

and the same of the atomistic particle phase 

𝛿𝑡((1 − 𝑠) ∑ 𝑚𝑝

𝑝=1,𝑁(𝑡)

)+ ∑ ((1 − 𝑠) ∑ 𝜌𝑝
𝑝=1,𝑁𝛾(𝑡)

𝐮𝐩)𝑑𝐧
𝑟𝛿𝑡

𝛾=1,6

= −𝛿𝑡𝐽
𝜌 (3) 
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𝛿𝑡 ((1 − s) ∑ 𝑚𝑝𝑢𝑖𝑝
𝑝=1,𝑁(𝑡)

)+ ∑ ((1 − 𝑠) ∑ 𝜌𝑝𝑢𝑖𝑝
𝑝=1,𝑁𝛾(𝑡)

𝐮𝐩)

𝜆=1,6

𝑑𝐧𝑟𝛿𝑡 =

= (1 − 𝑠) ∑ 𝐹𝑖𝑝𝛿𝑡 − 𝛿𝑡𝐽𝑖
𝐮

𝑝=1,𝑁(𝑡)

, 𝑖 = 1,2,3

(4) 

of the two-phase fluid. 

 

In the above equations, the fields with a sub-index 𝑝 corresponds to the particles while the 

cell-volume and cell-flux averaged values do not contain the particle sub-index. 𝜌𝑝 =
𝑚𝑝

𝑉
 is the 

density of the atomistic phase, which occupies the elementary cell 𝑉. 𝑚𝑝 ,𝐮𝑝 are the particle mass 

and velocity. 𝜌 is the density of the continuum phase and �̃� stands for the velocity vector of the 

two-phase mixture �̃�𝑖 = [𝑠𝜌𝑢𝑖 + (1 − 𝑠)∑ 𝜌𝑝𝑢𝑖𝑝𝑝=1,𝑁(𝑡) ]/�̃�, where 𝑢𝑖 is velocity of continuum 

hydrodynamic phase, which corresponds to the deterministic and stochastic parts of the Reynolds 

stress, Π and Π′, respectively. 𝑁𝑡 is the number of particles in elementary cell 𝑉.  𝑁𝛾(𝑡) is the 

number of particles crossing  the normal 𝑑𝐧𝑟 of  𝛾 surface  and �̅�  is the mixture density, �̃� =

𝑠𝜌 + (1 − 𝑠)∑ 𝜌𝑝𝑝=1,𝑁(𝑡) . 𝛿𝑡 denotes the change of mass and momenta over time 𝛿𝑡, which in 

case of the atomistic particles plays the role of the particle counter for mass and momenta in control 

volume V over time 𝛿𝑡.  

The source terms 𝛿𝑡𝐽
𝜌 and 𝛿𝑡𝐽𝑖

𝐮 are input functions of the hybrid model. They depend on 

the user-defined phase concentration function 𝑠 and are needed to suppress the artificial phase 

separation. These functions are selected in such a way to drive the differences from the target 

cell-averaged particle values and the two-phase mixture cell-averaged density and momenta , �̃� −

∑ 𝜌𝑝𝑝=1,𝑁𝛾(𝑡)   and �̃� ∙ �̃�𝑖 − ∑ 𝜌𝑝𝑢𝑖𝑝𝑝=1,𝑁(𝑡) , to zero 

The system of mass and momentum equations (3),(4) can be rearranged and solved 

numerically together with the Molecular Dynamics [38, 39]. These equations converge to the 

standard Landau-Lifshitz Navier-Stokes Fluctuating Hydrodynamics equations in the limit of s=1 

when the source terms dependent on the particle fields in Eqs (1) and (2) vanish to zero. 

The two-phase analogy model is closed by including appropriate continuum-discrete forcing 

terms in the Molecular Dynamics (MD) equations  
𝑑𝐱p

𝑑𝑡
= 𝐮p, 

𝑑𝐮p

𝑑𝑡
= 𝐅p/𝑚𝑝 (𝐱p, 𝐮p, 𝐅p and 𝑚𝑝 

are particle coordinate, velocity, interatomic potential force and particle mass) to obtain: 
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𝑑𝐱p

𝑑𝑡
= 𝐮p + 𝑠(�̃� − 𝐮p) + 𝛼(1 − 𝑠)s ∙

∑ (�̃� − ∑ 𝜌𝑝𝑝=1,𝑁𝛾(𝑡) ) 𝑑𝐧𝑟𝛾=1,6

∑ 𝑚𝑝𝑝=1,𝑁(𝑡)
(4) 

𝑑𝑢𝑖𝑝

𝑑𝑡
= (1 − 𝑠)𝐹𝑖𝑝 𝑚𝑖𝑝⁄ +

+

∑ ∑ (𝛼(1−𝑠)s∙∑ 𝜌𝑝∙𝑢𝑖𝑝𝑝=1,𝑁(𝑡) (
∑ (�̃�−∑ 𝜌𝑝𝑝=1,𝑁(𝑡) )𝑑𝑛𝑘

𝜆
𝜆=1,6

∑ 𝑚𝑝𝑝=1,𝑁(𝑡)
))𝛾=1,6𝑘=1,3 𝑑𝑛𝑘

𝜆

∑ 𝑚𝑝𝑝=1,𝑁(𝑡)

           +
∑ ∑ (𝛽(1−𝑠)s∙

1

𝑉
(∑ (�̃�∙�̃�𝑖−∑ 𝜌𝑝𝑢𝑖𝑝𝑝=1,𝑁(𝑡) )𝑑𝑛𝑘

𝜆
𝜆=1,6 ))𝑑𝑛𝑘

𝛾
𝛾=1,6𝑘=1,3

∑ 𝑚𝑝𝑝=1,𝑁(𝑡)
,   𝑖 = 1,2,3,                   

 (6)       

where �̃� and �̃� are the velocity vector and density of the two-phase mixture, ∑ 𝜌𝑝𝑝=1,𝑁(𝑡)  

and ∑ 𝜌𝑝𝑢𝑖𝑝𝑝=1,𝑁(𝑡)  are cell-averaged fields of the MD particle densities and velocity in the 

elementary Eulerian cell where the particle of interest resides at the moment. To preserve continuity, 

the field values corresponding to the particle coordinates are obtained by interpolation using the 

fields from adjacent elementary volumes. 𝛼 ≥ 0 and 𝛽 ≥ 0 are adjustable functions which control 

how fast the parameters of the particle phase equilibrate to the continuum flow values.  

The forcing terms on the right-hand-side are defined consistently with the 𝛿𝑡𝐽
𝜌 and 𝛿𝑡𝐽𝑖

𝐮 

fields to preserve the conservation of mass and momentum. In the limiting states 𝑠 = 0 and 𝑠 = 1, 

the corresponding source terms are zero because of the (1 − 𝑠)s multiplier. Notably, at 𝑠 = 0 the 

above particle equation reduce to the pure molecular dynamics. 

 

2.2 The one-way coupled hybrid multiscale model for bimolecular diffusion in Poiseuille flow 

Diffusion of small biomolecules is considered in a planar Poiseuille flow typical of 

nano-fluidic devices. The solution of the Poiseuille flow is given by [47]  

(𝜌0, 𝒖
𝑃𝑜𝑖𝑠𝑒𝑢𝑖𝑙𝑙𝑒) = (𝜌0, 𝑢1 , 𝑢2 , 𝑢3 )

𝑢1 =
𝑑𝑝/𝑑𝑥1
2𝜇

(𝐿2/4 − 𝑥3
2)

𝑢2 = 0
𝑢3 = 0 }

 
 

 
 

(5) 

where 𝜇 is dynamic viscosity and 𝐿/2 is a half-height of the cubic computational domain. The 

pressure gradient, 𝑑𝑝/𝑑𝑥1  is set to drive the flow with prescribed flow rates, 𝑢𝑚𝑎𝑥 =

𝐿2
𝑑𝑝/𝑑𝑥1

8𝜇
= 0.03, 0.04, 0.055, 0.07, 0.075 and 0.1 nm/ps corresponding to a range of Reynolds 

numbers, 𝑅𝑒 =
𝑢𝑚𝑎𝑥𝐿

𝜈
= 0.25 − 0.8  typical of microfluidic devices based on the kinematic 

viscosity of water =1.004 10-6 m2/s. Notably, 𝑢𝑚𝑎𝑥 = 0.03 nm/ps is a few orders of 
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magnitudes smaller in comparison with flow velocity values typically used in Non-Equilibrium 

MD (NEMD) methods, where the flow velocity would be required to be in the order of the thermal 

molecular speed in order to reduce the numerical noise due to insufficient statistical averaging. 

To include the thermal density and velocity fluctuations, which are important for nano-scale 

particle diffusion, thermal density and velocity fluctuations (𝜌′(𝒙, t), 𝐮′(𝒙, t)) are included, 

(𝜌, 𝐮)𝑡𝑜𝑡𝑎𝑙(𝒙, 𝑡) = (𝜌0 + 𝜌
′(𝒙, 𝑡), 𝒖𝑃𝑜𝑖𝑠𝑒𝑢𝑖𝑙𝑙𝑒(𝒙) + 𝒖′(𝒙, 𝑡)) , (6) 

where the fluctuation part, (𝜌(𝒙, t), 𝐮′(𝒙, t)) satisfies the free-space LL-FH equations  

𝜕𝜌

𝜕𝑡
+ div(𝜌 ∙ 𝐮′) = 0 (9) 

𝜕(𝜌 ∙ 𝑢𝑖
′)

𝜕𝑡
+ div(𝜌 ∙ 𝑢𝑖

′ ∙ 𝐮′) = ∑ ∇𝑗(𝛱𝑖𝑗 +𝛱′𝑖𝑗)

𝑖,𝑗=1,3

, (10) 

and where the deterministic and stochastic fluctuating Reynolds stresses 𝛱𝑖𝑗 and 𝛱′𝑖𝑗 are given by 

𝛱𝑖𝑗 = −𝑝′(𝜌)𝛿𝑖𝑗 (11) 

𝛱′𝑖𝑗 = 𝜉div 𝐮′𝛿𝑖𝑗 + 𝜂(𝜕𝑖𝑢𝑗
′ + 𝜕𝑗𝑢𝑖

′ − 2𝐷−1div𝐮′𝛿𝑖𝑗) (12) 

where 𝑖, 𝑗 = 1,2,3, 𝜉 and 𝜂 are shear and bulk water kinematic viscosity coefficients, 𝑝′ is the 

pressure fluctuations induced by the density fluctuation. According to the fluctuation-dissipation 

theorem, the covariance of the stochastic stress tensor Π′𝑖𝑗 is expressed as follows 

〈𝛱′𝑖𝑗(𝑟1, 𝑡1)𝛱′𝑘𝑙(𝑟2, 𝑡2)〉 = 2𝑘𝑏𝑇[𝜂(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + (𝜉 − 2𝐷
−1𝜂)𝛿𝑖𝑗𝛿𝑘𝑙] 

                                                           × 𝛿(𝑡1 − 𝑡2)𝛿(𝑟1 − 𝑟2)(7) 

Following the statistic mechanics theory [28], stochastic stress tensor can be expressed as 

follows 

𝛱′𝑖𝑗 = √
2𝑘𝑏𝑇

𝛿𝑡𝛿𝑉
(√2√𝜂 ∙ 𝐆𝐢𝐣

𝐒 + √𝐷√𝜉 ∙ 𝐭𝐫[𝐆] ∙
𝐄𝐢𝐣

𝐃
) (14) 

Here 𝐆 is random Gaussian matrix whose mean is zero, 𝐆𝐢𝐣
𝐒 =

𝐺𝑖𝑗+𝐺𝑖𝑗
𝑇

2
−  𝐭𝐫[𝐆] ∙

𝐄𝐢𝐣

𝐃
, 𝐄 is the unite 

matrix and 𝐭𝐫[𝐆] = 𝐺11 + 𝐺22 + 𝐺33, which stands for trace of matrix, 𝑇,𝑘𝑏 are temperature and 

Boltzmann constant respectively. 

By combining the analytical Poiseuille solution and the numerical LL-FH solution the total 

continuum hydrodynamic field, (𝜌, 𝐮)𝑡𝑜𝑡𝑎𝑙, is obtained. The latter solution includes both the 

nonuniform macroscopic flow effect and the thermal fluctuation effect and serves as a good 

approximation of the solution of the two-phase flow analogy equations (1)-(4), (�̃�, �̃�) ≡ (𝜌, 𝐮)𝑡𝑜𝑡𝑎𝑙. 
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The model (7)-(14) corresponds to a one-way coupled version of two-phase analogy method 

where the discrete particle phase is decoupled from continuum phase and the MD particles are 

immersed in the hydrodynamics “bath”, which effect becomes dominant for 𝑠 → 1 [41-43, 45]. 

In comparison with the fully coupled model, the continuum flow of the one-way coupled model is 

assumed to satisfy the stochastic Navier-Stokes equations, where the microscopic effects are 

implicitly included. Hence, all macroscopic parameters of these equations, such as the viscosity 

coefficient in the stress/strain relationship, need to be appropriately calibrated before using them 

as the effective external force fields in the modified MD equations (5) and (6) for consistency. 

To close the model, the application-specific window function 𝑠(𝑥, 𝑦, 𝑧, 𝑡), which controls the 

hybrid model resolution in locations of interest, needs to be defined. In the current case, the 

all-atom resolution is essential for each biomolecule and the surrounding water shell while the 

fully atomistic resolution can be gradually replaced by continuum reduce away from these 

sensitive regions. Since the number of diffusing biomolecules will vary in current study, another 

argument 𝑛=1,2 is introduced to distinguish between different cases: 

 

𝑆(𝑥, 𝑦, 𝑧, 𝑡, 1) = {

0 𝑟1(𝑡) ≤ 𝑅𝑀𝐷
𝑆1(𝑡) 𝑅𝑀𝐷 < 𝑟1(𝑡) < 𝑅𝐹𝐻
𝑆𝑚𝑎𝑥 𝑟1(𝑡) ≥ 𝑅𝐹𝐻

,        (15a) 

𝑆(𝑥, 𝑦, 𝑧, 𝑡, 2) =

{
 
 
 
 

 
 
 
 
0 (𝑟1(𝑡) ≤ 𝑅𝑀𝐷) ∩ (𝑟2(𝑡) ≥ 𝑅𝐹𝐻)

0 (𝑟1(𝑡) ≥ 𝑅𝐹𝐻) ∩ (𝑟2(𝑡) ≤ 𝑅𝑀𝐷)

0 (𝑟1(𝑡) ≤ 𝑅𝑀𝐷) ∩ (𝑅𝑀𝐷 < 𝑟2(𝑡) < 𝑅𝐹𝐻)

0 (𝑅𝑀𝐷 < 𝑟1(𝑡) < 𝑅𝐹𝐻) ∩ (𝑟2(𝑡) ≤ 𝑅𝑀𝐷)

0 (𝑟1(𝑡) ≤ 𝑅𝑀𝐷) ∩ (𝑟2(𝑡) ≤ 𝑅𝑀𝐷)

𝑆1(𝑡) (𝑅𝑀𝐷 < 𝑟1(𝑡) < 𝑅𝐹𝐻) ∩ (𝑟2(𝑡) ≥ 𝑅𝐹𝐻)

𝑆2(𝑡) (𝑟1(𝑡) ≥ 𝑅𝐹𝐻) ∩ (𝑅𝑀𝐷 < 𝑟2(𝑡) < 𝑅𝐹𝐻)

(𝑆1(𝑡) × 𝑆2(𝑡))/𝑆𝑚𝑎𝑥 (𝑅𝑀𝐷 < 𝑟1(𝑡) < 𝑅𝐹𝐻) ∩ (𝑅𝑀𝐷 < 𝑟2(𝑡) < 𝑅𝐹𝐻)

𝑆𝑚𝑎𝑥 (𝑟1(𝑡) ≥ 𝑅𝐹𝐻) ∩ (𝑟2(𝑡) ≥ 𝑅𝐹𝐻)

(15b) 

In the above expressions 𝑆𝑖(𝑡) (𝑖 = 1,2) is given by 

𝑆𝑖(𝑡) =
𝑟𝑖(𝑡)−𝑅𝑀𝐷

𝑅𝐹𝐻−𝑅𝑀𝐷
𝑆𝑚𝑎𝑥 , (16)

where 𝑟𝑖(𝑡) = (𝑥 − 𝑐𝑖𝑥)
2 + (𝑦 − 𝑐𝑖𝑦)

2 + (𝑧 − 𝑐𝑖𝑧)
2 stands for the distance from the center of 

mass of each biomolecule, whose coordinates are (𝑐𝑖𝑥, 𝑐𝑖𝑦, 𝑐𝑖𝑧)(𝑡), and the maximum value is set 

to 𝑆𝑚𝑎𝑥 = 0.98. For the one peptide case, Fig.1a shows the layout of the hybrid model where the 

computational domain decomposition is based on the S-function (15a) corresponding to the initial 

time moment, 𝑆(𝑥, 𝑦, 𝑧, 0,1) . The resolution gradually changes from all-atom (red region), 
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𝑆(𝑥, 𝑦, 𝑧, 0,1) = 0 to atomistic-continuum (white region), 0 < 𝑆(𝑥, 𝑦, 𝑧, 0,1) < 𝑆𝑚𝑎𝑥 and finally 

to the continuum resolution (white region), 𝑆(𝑥, 𝑦, 𝑧, 0,1) = 𝑆𝑚𝑎𝑥~1. Notably, in comparison 

with one peptide, for the two- peptide system, the all-atom resolution zone of the widow function, 

𝑆(𝑥, 𝑦, 𝑧, 𝑡, 2) = 0 can be a simply or a multiply connected region, depending on the distance 

between the two nanoparticles. Schematics of the model configuration for one- and two- peptide 

case are compared in Fig.1b. 

 

(a) 

 

 (b) 

Fig.1 The simulation domain of the hybrid multiscale method: (a) model details for the one 

biomolecule case where the peptide is immersed in water and its center is locked to the origin of 

the window function, 𝑆(𝑥, 𝑦, 𝑧, 0,1) and (b) schematics of the one- and two- peptide models.  

 

The entire model, which includes on the LL-FH equations (9)-(14) and modified MD 
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equations (5),(6),(15a),(15b),(16), is implemented in GROningen MAchine for Chemical 

Simulations (GROMACS) [44]. The MD simulations are performed at 298 K with Berendsen 

thermostat in a cubic computational box, (LⅹLⅹL)=(8ⅹ8ⅹ8) nm3, which corresponds to (10ⅹ

10ⅹ10) computational cells of the continuum LL-FH model solved by a finite-volume method 

[48]. The atomistic water modelling is based on the Extended Simple Point Charge (SPC/E) model 

and the target water density is set to 1000 kg/m3. Each simulation run corresponds to 1 ns, the MD 

time step is 1 fs, and the continuum hydrodynamics time step is set to 10 fs. To improve statistical 

averaging when computing the diffusion coefficient either with the pure MD or the hybrid FH-MD 

method, 15 independent runs are performed for each case. In the statistical case, the ensemble 

averaged diffusion coefficient over 15 runs is equivalent to computing the same coefficient over 

15 ns of simulation time since effective correlations in the MD signal decay much faster than one 

nanosecond. The continuum LL-FH computation corresponds to a small fraction of the cost of the 

MD model. Electrostatic interactions in the MD model are calculated by the reaction field method 

with dielectric constant equal to 78. The cut-off distance for electrostatic interaction and van der 

Waals force is set to 1 nm. A small peptide corresponding to the zwitterionic form of dialanine, is 

considered. The dialanine molecule compromises two residues and is a popular system in 

bio-molecular research. The peptide is simulated with the GROMOS 54A7 Force Field [49]. Van 

der Waals interactions between the water and the peptide are determined by mixing rules. Before 

performing production runs of the hybrid multiscale model, the MD part of the model is 

equilibrated by performing all-atom molecular dynamics simulation with no flow for 1 ns. NVT 

ensemble and triple periodic boundary conditions are used in all MD simulations. 

 

3.Results 

3.1 Diffusion of one and two peptides in water without flow 

As pointed out by [41], accuracy of the one-way coupled hybrid model is sensitive to the 

numerical parameters such as the size of the MD/FH buffer zone and the MD zone, 𝑅𝑀𝐷 and 

𝑅𝐹𝐻 parameters, respectively. In addition, the amplitudes of the forcing terms 𝛼 and 𝛽, which 

determine the strength of the coupling between the MD equations and the hydrodynamics field 

should be appropriately calibrated. Following [45], the model calibration step is performed by 

considering the peptide diffusion in water without any flow and comparing the hybrid method 
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results with the trajectory solutions obtained from the pure all-atom MD simulations.  

For one peptide-system (15a), the peptide molecule (P1) is initialised near the domain centre, 

2𝑥3

𝐿
= −0.175, and the model parameters are 𝑅𝑀𝐷 = 0.5𝐿/2, 𝑅𝐹𝐻 = 0.8𝐿/2, and 𝛼 = 𝛽 = 40 

nm2/ps, which are similar to the ones recommended in [45]. Fig.2a and b shows the resulting time 

dependency of the ensemble averaged mean square displacement (MSD) of one peptide diffusing 

in water. It should be noted that while the MSD trajectories have been computed for one 

nanosecond intervals in all simulations of this article, only the first 800 ps of those are used for the 

calculation of the diffusion coefficient to eliminate the spurious noise effect due to the open-ended 

signal. 

As expected for the isotropic diffusion case, the MSD trajectories along x,y and z direction 

are close one to another (in Fig.2a). This suggests that the hybrid model implementation is free 

from numerical artefacts. The peptide trajectory of the hybrid FH/MD model is in a good 

agreement with the reference solution of the all-atom MD simulation as shown in Fig.2b. 

Furthermore, the molecular diffusion coefficient of peptide in water is computed from the slope of 

the MSD trajectory in accordance with the Einstein relation [50]. The resulting diffusion 

coefficients obtained by the fits to trajectories shown in Fig.2b are 0.87ⅹ10-5 cm2/s and 0.77ⅹ

10-5 cm2/s for the all-atom MD model and the hybrid FH/MD model, respectively.  

To probe sensitivity of the hybrid multiscale model to the 𝛼 and 𝛽 coupling parameters, the 

same single peptide in water at equilibrium conditions is simulated for 𝛼 = 𝛽 = 60 nm2/ps (50% 

increase in comparison with the recommended values). The results are shown in Fig.2 (c) and (d). 

Notably, the MSD trajectories along x,y and z direction are still close one to another as expected 

for the isotropic diffusion process (Fig.2c). However, the computed diffusion coefficient in this 

case is 0.54ⅹ10-5 cm2/s (Fig.2d), which is 40% smaller than the MD reference and 30% smaller 

than the model result for 𝛼 = 𝛽 = 40 nm2/ps case. This indicates that the hybrid model is 

moderately sensitive to the coupling parameter. This parameter is a calibration coefficient, which 

needs to be re-evaluated for each system. Hence, given the accurate results produced by the hybrid 

model at 𝛼 = 𝛽 = 40 nm2/ps, the latter value of the coupling parameter is used for the simulation 

of the single peptide in water system where the flow is activated. 
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Fig.2 Isotropic molecular diffusion of one peptide in water: (a) the ensemble averaged mean 

square displacement (MSD) along the x1, x2 and x3 directions and the total MSD of the hybrid 

FH/MD model, (b) comparison of the total MSD trajectories between the all-atom MD simulation 

and the FH/MD model at 𝛼 = 𝛽 = 40 nm2/ps. (c) and (d) are the same as (a) and (b) but at 𝛼 =

𝛽 = 60 nm2/ps 

 

To simulate the diffusion of two peptide molecules in water (15b), a duplicate of the first 

peptide is introduced in the same computational box filled with water. In order to analyse the 

effect of the initial peptide location on its diffusion, two scenarios are simulated so that after the 

initial MD equilibration step: (i) one peptide (P1) is initialised near the domain centre, 
2𝑥3

𝐿
=

−0.175, and the other (P2) is closer to the boundary, which would correspond to the edge of the 

flow, 
2𝑥3

𝐿
= −0.875, and (ii) both peptides are initialised close to the centre by keeping the 

peptide P1 location the same while adjusting the P2 location to 
2𝑥3

𝐿
= 0.075. 

Following the discussion about the hybrid model sensitivity, in comparison with the one 

peptide -in-water system case (Fig.2b,d), the calibration parameters of the model for the two- 
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peptide system has been readjusted for best accuracy. While the size of the pure MD zone remains 

same, 𝑅𝑀𝐷 = 0.5𝐿/2, the buffer MD/FH zone is reduced to 𝑅𝐹𝐻 = 0.7𝐿/2 and the coupling 

constants are adjusted to 𝛼 =  𝛽 = 60 nm2/ps. 

Fig.3 shows the resulting time dependency of the ensemble averaged MSD for three different 

directions and the total MSD from FH/MD model for the two peptides’ system corresponding to 

initial conditions (i). Similar to the one peptide diffusion, the MSD trajectories do not show any 

significant anisotropy for either P1 or P2. In addition, the results for P1 and P2 are very similar as 

expected for the molecular diffusion in equilibrium conditions. The now-flow results for initial 

conditions (ii) are almost identical to the results for P1 (Fig.3a,b), hence, are not shown. 

Altogether this confirms that the hybrid FH/MD model parameters have been calibrated correctly. 

Similar to the one peptide system, the diffusion coefficient is calculated from the slope of the 

MSD trajectory (Fig.6b,d) and compared with the results of the all-atom MD simulation. The 

diffusion coefficient obtained from the all-atom MD model are 0.89ⅹ10-5 and 0.65ⅹ10-5 cm2/s 

for peptides P1 and P2. This should be compared with the diffusion coefficients of the FH/MD 

model, 1.05ⅹ10-5 and 0.82ⅹ10-5 cm2/s, respectively, which are obtained for the same two 

peptides.  

It can be noted that, since the two peptide molecules are identical and the diffusion is 

isotropic, any difference between the diffusion coefficients of the two peptides should be 

associated with the insufficient ensemble averaging due to the shortness of the MD simulation 

time. While the diffusion results of the one peptide system between the FH/MD model and the 

all-atom MD agree within 18%, for the two- peptide system, the discrepancy for P2 in comparison 

with the all-atom MD solution is increased to 25%. This is in agreement with [51] who suggested 

an additional correction for finiteness of the periodic box domain when computing molecular 

diffusion coefficients of complex fluids such as polymer chains in water.  

Nevertheless, having considered the difference between the diffusion coefficients of the P1 

and P2 peptides in the all-atom MD simulation, 0.14ⅹ10-5 cm2/s as a measure of the statistical 

averaging error, the diffusion coefficients of the two peptide systems are in a reasonable 

agreement with the results of the single peptide diffusion. Hence, the suggested FH/MD model can 

be assumed to be validated for the considered case of the dilute solution of peptides in water. 
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Fig.3 Isotropic molecular diffusion of two peptides in water corresponding to initial conditions (i):  

(a) and (c) are the ensemble averaged mean square displacement (MSD) along x1, x2 and x3 

direction and the total MSD from FH/MD model for peptide P1 and where (b),(d) stand for the 

same quantities for peptide P2. MSD trajectories obtained from the reference all-atom MD 

simulations are provided in each case. 

 

3.2 Diffusion of one and two peptides in periodic Poiseuille flow 

Having validated the hybrid FH/MD model for the one- and two- peptide systems without 

flow, the same systems are simulated in the Poiseuille flow in accordance with Eq(7) and for the 

pre-selected coupling parameters of the hybrid model based on the equilibrium simulations.  

Six different flow regimes are considered corresponding to a range of Reynolds numbers 

corresponding to the maximum flow velocity, 𝑢𝑚𝑎𝑥 = 0.03, 0.04, 0.055, 0.07, 0.075 and 0.1 

nm/ps. 

In order to ensure that the prescribed bulk flow regime is accurately implemented in each 

case, the simulation domain is broken down into several bins in the vertical direction, x3, and the 

velocity profile of MD particles averaged in each bin and also the simulation time, 𝑢1, is plotted 
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as a function of vertical coordinate. To collapse the data from the six different velocity regimes, all 

velocities are normalised by the corresponding 𝑢𝑚𝑎𝑥 in each case. The resulting dimensionless 

velocity profiles for the one- and two- peptide systems are shown in Fig.4a and b. The results 

shown in Fig.4b correspond to the initial peptide conditions (i). Results of the two- peptide system 

simulation for the configuration (ii) are virtually the same. All solutions of the hybrid FH/MD 

model are in good agreement with the analytical Poiseuille flow profile. 
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Fig.4 Comparison of the mean-flow velocity profile obtained by bin and time averaging of the MD 

particles of the hybrid FH/MD solution with the analytical model for the one- (a) and the two- 

peptide - system (b). All velocities have been normalised by the maximum velocity of the 

parabolic flow profile in each case: 0.03nm/ps (hybrid model1), 0.04 (hybrid model2), 0.055 

(hybrid model3), 0.07 (hybrid model4), 0.075 (hybrid model5) and 0.1 nm/ps (hybrid model6). 

 

As the next step, diffusion of one peptide in the Poiseuille flow is simulated for the same 

range of flow velocities. The averaged total MSD of the peptide and its x1 coordinate are shown 

in Fig.5 (a) and (b) for flow velocities 0.055 and 0.1 nm/ps. Fig.5 (c) to (f) show the x2 and x3 

components for the flow velocities 0.055, 0.07, 0.075, and 0.1 nm/ps. In comparison with Fig.2 (a), 

the MSD trajectory in Fig.5 (a) and (b) is of convective type (shows faster than linear growth) in 

the stream-wise direction, x1. This can be attributed to the convection effect that reinforces the 

diffusion in this direction. Another observation from Fig.5 (c) to (f) is that the molecular diffusion 

in the shear gradient direction, x3, i.e. the lateral migration, is faster in comparison with the 

diffusion of the homogeneous flow direction, x2. 

Interestingly, in comparison with the diffusion in the homogeneous direction, the lateral 

diffusion increases with the shear rate magnitude: the lateral migration accelerates near the valleys 
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of the Poiseuille flow, where the shear is strongest. The lateral migration seems to exhibit a change 

from the diffusive type (near the peak of the flow profile) to the convective type (near the valleys 

of the flow), which will be quantified in the future work, since the lateral migration has an 

important application in microfluidic devices [52].  
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Fig.5 Diffusion of the single peptide in Poiseuille water flow: the ensemble averaged mean square 

displacement (MSD) in the x1 and the total MSD trajectories for 𝑢𝑚𝑎𝑥 = 0.055 (a), 0.1 nm/ps 
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(b). The MSD in the x2 and x3 directions are shown for 𝑢𝑚𝑎𝑥 = 0.055 (c), 0.07(d), 0.075(e), 

and 0.1 nm/ps (f). 

 

In order to analyse the molecular diffusion process in the flow, the root-mean-square of the 

convection speed, r.m. s. (𝑢1𝑐) is calculated from the MSD trajectories (Appendix A, Eq(A7)) 

for different flow velocities and plotted as a function of Reynolds number 𝑅 =
𝑢𝑚𝑎𝑥𝐿

𝜈
 in Fig.6a. 

R.m. s. (𝑢1𝑐) can be regarded as an effective convection speed of the peptide in the transversely 

non-uniform flow. It can be noted that the effective convection speed is approximately constant at 

Reynolds numbers lower than 0.5 and then rapidly increases as the Reynolds number exceeds 0.5. 

The increase of the effective convection speed indicates a prominent amplification of the 

molecular diffusion in the stream-wise direction due to the inertial flow effect. 

To further analyse the lateral migration of the peptide molecule from the initial location to the 

equilibrium position in the x3 direction, i.e. dimensionless distance of the lateral peptide migration, 

φ, is calculated from the MSD trajectory in the lateral direction (Appendix A, Eq(A8)). In 

accordance with the definition of the φ-function, for the initial location in the channel centre 

x3 = 0, dimensionless distance φ = 1 corresponds to the edge of the flow where x3/𝐿 = ±0.5. 

Fig.6b shows as the Reynolds number increases, the peptide tends to migrate closer to the 

boundary, where the shear flow velocity gradient, 
𝑑

𝑑𝑥3
𝑢1 = −

𝑑𝑝/𝑑𝑥1

𝜇
𝑥3 becomes negative in 

comparison with the zero value at x3 = 0. This suggests that the lateral migration occurs in the 

direction against the shear gradient, which effect becomes stronger with the pressure gradient, 

𝑑𝑝/𝑑𝑥1 thereby increasing with the Reynolds number.  

It can also be noted that, for Reynolds numbers smaller than 0.5, the peptide tends to diffuse 

towards the flow boundary very slowly in comparison with the larger Reynolds number cases. It 

can be suggested that in the low Reynolds number case, the lateral migration is not flow related 

but rather attributed to the Brownian motion, which effect can also be investigated in future work. 

In addition, it can be noted that in the experiment reported in [53] the particles initially 

uniformly distributed across the channel gradually migrate to the boundary of the channel with the 

increase of the Reynolds number from 0.36 to 14. Hence, despite having the same trend with 

regards to the Reynolds number, the lateral migration in the experiment [53] starts at the Reynolds 
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number much larger than the simulated Reynolds number in the present work. The discrepancy in 

the Reynolds number regime between the experiment and the simulation is attributed to the 

difference between the particle size: the peptides considered in the current work are much smaller 

in comparison with the particles used in [53]. This consideration is consistent with the 

experimental results [52], which showed that small particles tend to have faster lateral migrations 

in comparison with large particles at same Reynolds number. Furthermore, the increase of the 

lateral migration with the Reynolds number captured by the present multi-scale model is in good 

agreement with the continuum theory [54] as well as with the experiments on diffusion of 

micrometer-size [55] and nanometer–size [56] particles.  
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Fig.6 Effect of the Reynolds number on the stream-wise and lateral diffusion of one peptide in 

Poiseuille flow: (a) effective convection velocity of the peptide r.m. s(𝑢1𝑐)  and (b) 

dimensionless distance of the lateral migration, φ. 

 

Let’s now discuss results for the two peptides in Poiseuille flow in case of the initial peptide 

conditions (i) where peptide molecule P1 is inserted in the centre of the channel while where the 

flow velocity is close to 𝑢𝑚𝑎𝑥 and amino acid P2 is placed close to the boundary. 

Fig.7 show the MSD trajectories in the three coordinate directions for P1 (panels (a-b)) and 

P2 (panels (c-d)) amino acids for three representative flow rates corresponding to 𝑢𝑚𝑎𝑥 = 0.07, 

0.075 and 0.1 nm/ps. Similar to the results for the one peptide system, the MSD in the stream-wise 

direction, x1 shows a faster than linear growth for both P1 and P2 peptides. The growth is notably 

faster in comparison with the diffusion in the tangential flow directions. Again, this is attributed to 

the convection effect, where the fluid inertia enhances diffusion in the flow direction.  

Similar to the one peptide system, for all flow rates, the MSD trajectory of peptide P1 shows 
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a faster diffusion in the lateral direction, x3 in comparison with the homogeneous flow direction, 

x2.  In contrast to P1, the diffusion of peptide P2 in the shear gradient direction has a similar rate 

to the diffusion in the x2 direction, which suggests the lateral diffusion speed depends on the initial 

location of the peptide. 
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Fig.7 Diffusion of two peptides in water in Poiseuille flow corresponding to initial conditions (i): 

the ensemble averaged mean square displacement (MSD) in the x2 and x3 directions and the 

total MSD trajectories for a range of flow regimes, 𝑢𝑚𝑎𝑥 = 0.07 (a) and (d), 0.075(b) and (e), and 
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0.1 nm/ps (c) and (f). (a,b,c) correspond to peptide P1 and (d,e,f) stands for peptide P2. 

 

To further quantify the diffusion behavior of peptides P1 and P2, the effective convection 

speed, r.m. s. (𝑢1𝑐) and the dimensionless distance, φ are calculated for each case. Results for 

different Reynolds numbers are presented in Fig.8. 

For both peptides, r.m. s(𝑢1𝑐) shows a similar approximately linear increase with the 

Reynolds number. This confirms that the inertia flow effect on the peptide diffusion in the 

stream-wise direction does not depend on the initial amino acid location, as expected since in this 

case the diffusion is normal to the shear gradient. In comparison with this, the lateral distance φ 

has a completely different behavior for the two peptide system. In the P1 case (Fig.9, small balls 

with bonds), which peptide mainly diffuses against the shear flow gradient direction, φ increases 

with the Reynolds number similar to the one- peptide system diffusion (comp. with Fig.6b). 

However, for the P2 case (Fig.9, large balls no bonds), φ takes a small value that virtually does 

not depend on the Reynolds number. In this case, peptide P2 was initially located close to the edge 

of the flow, where the shear flow gradient, 
𝑑

𝑑𝑥3
𝑢1 reaches its negative peak value. In this case, 

any notable lateral migration of the peptide could only happen towards the channel centre, which 

would be in the direction of the shear gradient. However, such migration does not happen, and the 

‘large ball’ peptide keeps jumping between the top and the bottom periodic boundary condition 

corresponding to the valleys of the periodic Poiseuille flow. This suggests that the lateral diffusion 

process of peptide molecules has a preferred direction always against the shear.  
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Fig.8 Effect of the Reynolds number on the stream-wise and lateral diffusion of two peptides in 
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Poiseuille flow corresponding to initial conditions (i): (a) effective convection velocity of the 

peptide r.m. s(𝑢1𝑐) and (b) dimensionless distance of the lateral peptide migration, φ.  

 

 

 

Fig.9 Evolution of two peptides starting from initial conditions (i) in Poiseuille flow at 𝑢𝑚𝑎𝑥= 0.1 

nm/ps. Atoms of peptide P1 are shown by small balls and bonds and those of peptide P2 are 

depicted by large balls and no bonds. The flow velocity profile is shown in the left snapshot for 

reference. 

 

To further confirm that the lateral migration of peptides is enhanced in the direction against 

the shear gradient, the diffusion of two peptides in the same Poiseuille flow is considered for 

initial conditions (ii). In this case both peptides are initially located near the centre of the channel.  

The results are shown in Fig. 10, which should be compared with Fig.8 for the same peptide 

system at different initial conditions. It can be noted that when both the P1 and P2 peptides are 

initialised at a similar vertical coordinate in the flow velocity profile their diffusion properties are 

also very similar not only in the stream-wise direction but also in the shear-gradient direction. For 

both the peptides, the diffusion rate increases with the flow Reynolds number and the functional 

dependencies of r.m. s(𝑢1𝑐) and φ of each peptide are similar to those of one diffusing peptide 

(comp. with Fig.6). The revealed similarity with the one- peptide system suggests that peptide- 

peptide interaction has a negligible effect for the considered two-peptide system in comparison 

with the lateral migration due to the shear effect. 
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Fig.10 Effect of the Reynolds number on the stream-wise and lateral diffusion of two peptides in 

Poiseuille flow corresponding to initial conditions (ii): (a) effective convection velocity of the 

peptide r.m. s(𝑢1𝑐) and (b) dimensionless distance of the lateral migration, φ.  

 

3.3 Comparison of computational costs between MD and FH/MD for one peptide diffusing 

in Poiseuille flow 

One of the advantages of the FH/MD method in comparison with the single-scale 

atomistic-resolution methods such as Non-Equilibrium Molecular Dynamics (NEMD) is the greatly 

reduced computational cost. For example, in [57] the authors performed a NEMD of the Couette 

flow of water atoms in a microscopic channel between two sliding graphene walls at room 

temperature conditions. Due to the statistical noise associated with the thermal atom fluctuations, 

the statistical convergence of the NEMD solution for a non-uniform flow profile was shown to be 

limited to relatively large flow speeds, e.g. 𝑈𝑓𝑙𝑜𝑤 ≥ 50 𝑚/𝑠. This is because, when computing the 

time-averaged flow velocity 𝑈𝑓𝑙𝑜𝑤 = 𝑈𝑓𝑙𝑜𝑤(𝑥3), the thermal-noise induced velocity fluctuation, 

𝛿𝑈𝑓𝑙𝑜𝑤 scales as 

𝛿𝑈𝑓𝑙𝑜𝑤 =
𝐴 ∙ 𝑈𝑡ℎ𝑒𝑟𝑚𝑎𝑙

√𝑁𝑁𝐸𝑀𝐷 ∙ 𝑀𝑏𝑖𝑛

(17) 

where 𝑁𝑁𝐸𝑀𝐷 is the number of MD time steps, 𝑀𝑏𝑖𝑛 is the number of MD atoms per the sampling 

bin volume, 𝑈𝑡ℎ𝑒𝑟𝑚𝑎𝑙  is the characteristic thermal velocity of water atoms (which from the 

equipartition theorem can be estimated to be 585 𝑚/𝑠), and 𝐴 is a proportionality parameter 

depending on the chemical potentials of the simulated water system. 

In the NEMD simulations of Couette water flow [57], the solution averaging over 106 MD 

steps was required to converge the error down to 10% of 𝑈𝑓𝑙𝑜𝑤 = 50 𝑚/𝑠. The averaging bin size 

considered in [57] is approximately the same as in the current work. Furthermore, assuming the 
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same parameter 𝐴 holds for NEMD simulations of water atoms at the same room temperature 

conditions, Eq(17) can be inverted to calculate the number of NEMD time steps required for the 

statistical convergence within 10% of the peak velocity of the Poiseuille flow, 𝑈𝑓𝑙𝑜𝑤 =

max (𝒖𝑃𝑜𝑖𝑠𝑒𝑢𝑖𝑙𝑙𝑒), 

𝑁𝑁𝐸𝑀𝐷 = 𝑀𝑏𝑖𝑛
−1 (

𝐴 ∙ 𝑈𝑡ℎ𝑒𝑟𝑚𝑎𝑙
0.1 ∙ 𝑈𝑓𝑙𝑜𝑤

)

2

. (18) 

 

The results of applying Eq(18) to the Poiseuille flows considered in Section 3.2 are summarised in 

Table 1. The table takes into account that the computational cost of the FH/MD method is mostly 

dominated by the MD part of the solution, and the cost of solving the modified MD equations 

(5),(6) per time step is about 19% higher in comparison with that of the pure MD solution for the 

same number of atoms. All run times correspond to the simulations performed on 32 CPU cores in 

GROMACS. Notably, in comparison with the all-atom NEMD method, the cost of the multiscale 

solution does not scale with the flow velocity. Depending on the flow regime, the computational 

cost of the all-atom NEMD simulations for the same molecular system corresponds to a 2- to 

20-fold increase in comparison with the multiscale solution (FH/MD). 

 

Table 1. Evaluation of the computational efficiency of the FH/MD method in comparison with the 

all-atom NEMD method for the single peptide diffusion in Poiseuille flow. 

Peak flow 

velocity (m/s) 

NEMD steps 

required, 

x106 

MD 

computational 

run times, hours 

FH/MD steps, 

x106 

FH/MD 

computational 

run times, hours 

30 27 7.5 1  0.32 

40 15 4.2 1 0.32 

55 8.2 2.2 1 0.32 

75 4.4 1.2 1 0.32 

100 2.5 0.67 1 0.32 

 

Conclusion 

A hybrid multiscale model is implemented to simulate the diffusion process of one and two 
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peptide molecules in Poiseuille flow. Characteristic feature of the new model includes the 

resolution of inter-atomic forces between the migrating biomolecules and the surrounding water 

atoms with consistently accounting for the non-uniform bulk flow at several Reynolds numbers. 

The model represents an extension of the previously developed hybrid multiscale method based on 

coupling Molecular Dynamics (MD) and Fluctuating Hydrodynamics (FH) simulations of the 

same complex fluid [41, 45] to multiple moving peptide molecules solvated in water and subjected 

to Poiseuille flow. The hybrid model has been validated in comparison with the all-atom MD 

simulation for the no flow case and in comparison with the analytical Poiseuille flow velocity 

profile. 

The effect of the flow Reynolds number of peptide diffusion in Poiseuille flow has been 

investigated. First, it is shown that, irrespective of the initial peptide location in the channel, the 

inertial flow effect always leads to a faster than linear growth of the Mean Square Deviation 

(MSD) trajectory in the stream-wise direction. Secondly, the lateral peptide migration strongly 

depends on the shear flow velocity gradient: while the lateral diffusion against the shear gradient 

is enhanced as the Reynolds number increases, the lateral diffusion in the direction of the shear 

gradient is suppressed regardless of the Reynolds number. This leads to a sensitivity of the lateral 

migration of peptides to the initial location where the biomolecules are injected in the non-uniform 

flow profile. 

The computational efficiency of the suggested FH/MD method is compared with the all-atom 

Non-Equilibrium MD (NEMD) based on the thermal velocity scaling, where the scaling parameter 

is evaluated from the previous NEMD simulation of a uniform shear water flow. It is shown that the 

computational cost of the all-atom NEMD simulations for the current system is expected to be a factor 

of 2 to 20 greater in comparison with the suggested FH/MD method. Notably, in contrast to the 

all-atom NEMD methods, the cost of the multiscale solution does not scale with the flow velocity. 

Remarkably, the sensitivity of lateral diffusion transport of small peptides to the shear flow 

gradient in Poiseuille flow was previously predicted using a continuum diffusion theory based on 

the rigid sphere model [54,58]. The current atomistic-scale resolving simulation results confirm 

the same effect at the nanoscale level, where assumptions of the continuum theory break down. 

Further work will be devoted to a detailed study of the peptide structure such as the 

Ramachandran plot of the peptide angles under the non-uniform flow effect. For example, the 
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effect of the shear on the peptide structure can be expected to have important implications for 

protein delivery in medical devices. 

 

Acknowledgement 

The work of F.L. was supported by the China Scholarship Council (CSC). I.A.K. and S.A.K. 

gratefully acknowledge the funding under the European Commission Marie Skłodowska-Curie 

Individual Fellowship Grant No. H2020-MSCA-IF-2015-700276 (HIPPOGRIFFE). V. F. thanks 

Ministry of Education and Science of Ukraine for financial support in the frame of project "Novel 

nanomaterials based on the lyophilic self-assembled systems: theoretical prediction, experimental 

investigation and biomedical applications" (0120U101064). The work was also supported by 

European Commission in the framework of the RISE program, Grant No. 

H2020-MSCA-RISE-2018-824022-ATM2BT and utilised Queen Mary’s Apocrita HPC facility, 

supported by QMUL Research-IT [59]. 

The authors are greatful to Dr Dmitry Nerkuh from Aston University, UK for helpuful 

comments and discussion. 

 

Data Availability 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request 

References 

1. Sanders, G.H.W. and A. Manz, Chip-based microsystems for genomic and 

proteomic analysis. TrAC Trends in Analytical Chemistry, 2000. 19(6): p. 364-378. 

2. DeWitt, S.H., Microreactors for chemical synthesis. Current opinion in chemical 

biology, 1999. 3(3): p. 350-356. 

3. Mach, A.J. and D. Di Carlo, Continuous scalable blood filtration device using 

inertial microfluidics. Biotechnology and Bioengineering, 2010. 107(2): p. 302-311. 

4. Gossett, D.R., et al., Inertial Manipulation and Transfer of Microparticles Across 

Laminar Fluid Streams. Small, 2012. 8(17): p. 2757-2764. 

5. Segre, G. and A. Silberberg, Behaviour of macroscopic rigid spheres in Poiseuille 

flow. Part 1. Determination of local concentration by statistical analysis of particle passages 

through crossed light beams. Journal of Fluid Mechanics, 1962. 14: p. 115. 

6. Phillips, R.J., et al., A constitutive equation for concentrated suspensions that 

accounts for shear‐induced particle migration. Physics of Fluids A: Fluid Dynamics, 1992. 4(1): 

p. 30-40. 



 

28 

 

7. Nott, P.R. and J.F. Brady, Pressure-driven flow of suspensions: simulation and 

theory. Journal of Fluid Mechanics, 1994. 275: p. 157-199. 

8. Morris, J.F. and F. Boulay, Curvilinear flows of noncolloidal suspensions: The role 

of normal stresses. Journal of Rheology, 1999. 43(5): p. 1213-1237. 

9. Shapley, N.C., R.A. Brown, and R.C. Armstrong, Evaluation of particle migration 

models based on laser Doppler velocimetry measurements in concentrated suspensions. Journal 

of Rheology, 2004. 48(2): p. 255-279. 

10. Miller, R.M. and J.F. Morris, Normal stress-driven migration and axial 

development in pressure-driven flow of concentrated suspensions. Journal of Non-Newtonian 

Fluid Mechanics, 2006. 135(2): p. 149-165. 

11. Miller, R.M., J.P. Singh, and J.F. Morris, Suspension flow modeling for general 

geometries. Chemical Engineering Science, 2009. 64(22): p. 4597-4610. 

12. Mirbod, P., Two-dimensional computational fluid dynamical investigation of 

particle migration in rotating eccentric cylinders using suspension balance model. International 

Journal of Multiphase Flow, 2016. 80: p. 79-88. 

13. Ingber, M.S., et al., An improved constitutive model for concentrated suspensions 

accounting for shear-induced particle migration rate dependence on particle radius. 

International Journal of Multiphase Flow, 2009. 35(3): p. 270-276. 

14. Baghban, A., et al., Estimation of oil and gas properties in petroleum production 

and processing operations using rigorous model. Petroleum Science and Technology, 2016. 

34(13): p. 1129-1136. 

15. Aminfar, H. and R. Motallebzadeh, Numerical Investigation of the Effects of 

Nanoparticle Diameter on Velocity Field and Nanoparticle Distribution of Nanofluid Using 

Lagrangian-Eulerian Approach. Journal of Dispersion Science and Technology, 2011. 32(9): p. 

1311-1317. 

16. Singh, P.K., et al., Experimental and Numerical Investigation Into the Heat 

Transfer Study of Nanofluids in Microchannel. Journal of Heat Transfer, 2011. 133(12). 

17. Lin, Y.-C. and C.-P. Jen, Mechanism of hydrodynamic separation of biological 

objects in microchannel devices. Lab on a Chip, 2002. 2(3): p. 164-169. 

18. Kim, M.-m. and A.L. Zydney, Theoretical analysis of particle trajectories and 

sieving in a two-dimensional cross-flow filtration system. Journal of Membrane Science, 2006. 

281(1): p. 666-675. 

19. Ahlrichs, P. and B. Dünweg, Simulation of a single polymer chain in solution by 

combining lattice Boltzmann and molecular dynamics. The Journal of Chemical Physics, 1999. 

111(17): p. 8225-8239. 

20. Lyulin, A.V., D.B. Adolf, and G.R. Davies, Brownian dynamics simulations of 

linear polymers under shear flow. The Journal of Chemical Physics, 1999. 111(2): p. 758-771. 

21. Cui, W., et al., Effect of chaotic movements of nanoparticles for nanofluid heat 

transfer augmentation by molecular dynamics simulation. Applied Thermal Engineering, 2015. 

76: p. 261-271. 

22. Hu, C., et al., Molecular dynamics simulation on the friction properties of 

nanofluids confined by idealized surfaces. Tribology International, 2014. 78: p. 152-159. 

23. Ren, W. and W. E, Heterogeneous multiscale method for the modeling of complex 

fluids and micro-fluidics. Journal of Computational Physics, 2005. 204(1): p. 1-26. 



 

29 

 

24. Yasuda, S. and R. Yamamoto, A model for hybrid simulations of molecular 

dynamics and computational fluid dynamics. Physics of Fluids, 2008. 20(11): p. 113101. 

25. Borg, M.K., D.A. Lockerby, and J.M. Reese, A multiscale method for micro/nano 

flows of high aspect ratio. Journal of Computational Physics, 2013. 233: p. 400-413. 

26. Borg, M.K., et al., Multiscale simulation of water flow through laboratory-scale 

nanotube membranes. Journal of Membrane Science, 2018. 567: p. 115-126. 

27. O’Connell, S.T. and P.A. Thompson, Molecular dynamics--continuum hybrid 

computations: A tool for studying complex fluid flows. Physical Review E, 1995. 52(6): p. 

R5792-R5795. 

28. Lifshitz, L.D.L.a.E.M., Statistical Physics. 1980, Amsterdam: Elsevier. 

29. De Fabritiis, G., R. Delgado-Buscalioni, and P.V. Coveney, Multiscale Modeling of 

Liquids with Molecular Specificity. Physical Review Letters, 2006. 97(13): p. 134501. 

30. De Fabritiis, G., et al., Fluctuating hydrodynamic modeling of fluids at the 

nanoscale. Physical Review E, 2007. 75(2): p. 026307. 

31. Voulgarakis, N.K. and J.-W. Chu, Bridging fluctuating hydrodynamics and 

molecular dynamics simulations of fluids. The Journal of Chemical Physics, 2009. 130(13): p. 

134111. 

32. FlekkØy, E.G., G. Wagner, and J. Feder, Hybrid model for combined particle and 

continuum dynamics. Europhysics Letters, 2000. 52(3): p. 271-276. 

33. Delgado-Buscalioni, R. and P.V. Coveney, Continuum-particle hybrid coupling for 

mass, momentum, and energy transfers in unsteady fluid flow. Physical Review E, 2003. 67(4): 

p. 046704. 

34. Nie, X.B., et al., A continuum and molecular dynamics hybrid method for micro- 

and nano-fluid flow. Journal of Fluid Mechanics, 2004. 500: p. 55-64. 

35. Praprotnik, M., L.D. Site, and K. Kremer, Adaptive resolution molecular-dynamics 

simulation: Changing the degrees of freedom on the fly. The Journal of Chemical Physics, 2005. 

123(22): p. 224106. 

36. Delgado-Buscalioni, R., K. Kremer, and M. Praprotnik, Concurrent triple-scale 

simulation of molecular liquids. The Journal of Chemical Physics, 2008. 128(11): p. 114110. 

37. Pavlov, E., et al., Visualising and controlling the flow in biomolecular systems at 

and between multiple scales: from atoms to hydrodynamics at different locations in time and 

space. Faraday Discussions, 2014. 169(0): p. 285-302. 

38. Scukins, A., et al., Multiscale molecular dynamics/hydrodynamics implementation 

of two dimensional “Mercedes Benz” water model. The European Physical Journal Special 

Topics, 2015. 224(12): p. 2217-2238. 

39. Korotkin, I.A. and S.A. Karabasov, A generalised Landau-Lifshitz fluctuating 

hydrodynamics model for concurrent simulations of liquids at atomistic and continuum 

resolution. The Journal of Chemical Physics, 2018. 149(24): p. 244101. 

40. Markesteijn, A., et al., Concurrent multiscale modelling of atomistic and 

hydrodynamic processes in liquids. Philosophical Transactions of the Royal Society A: 

Mathematical,     Physical and Engineering Sciences, 2014. 372(2021). 

41. Korotkin, I., et al., A hybrid molecular dynamics/fluctuating hydrodynamics method 

for modelling liquids at multiple scales in space and time. The Journal of Chemical Physics, 

2015. 143(1): p. 014110. 



 

30 

 

42. Korotkin, I., et al., Two-phase flow analogy as an effective boundary condition for 

modelling liquids at atomistic resolution. Journal of Computational Science, 2016. 17, Part 2: p. 

446-456. 

43. Tarasova, E., et al., Complete virus capsid at all-atom resolution: Simulations using 

molecular dynamics and hybrid molecular dynamics/hydrodynamics methods reveal 

semipermeable membrane function. Journal of Molecular Liquids, 2017. 245: p. 109-114. 

44. Van Der Spoel, D., et al., GROMACS: Fast, flexible, and free. Journal of 

Computational Chemistry, 2005. 26(16): p. 1701-1718. 

45. Hu, J., I.A. Korotkin, and S.A. Karabasov, Hybrid multiscale simulation reveals 

focusing of a diffusing peptide molecule by parallel shear flow in water. Journal of Molecular 

Liquids, 2019. 280: p. 285-297. 

46. F. Li , I.K., M. Taiji, S.Karabasov,, A multi-scale and multi-physics Atomic Force 

Microscopy model for force calculations at atomistic resolution and realistic flow conditions, F. 

Li , I. Korotkin , M. Taiji, S.Karabasov. under review. 

47. Hagen–Poiseuille equation (and laminar flow), in Essential Equations for 

Anaesthesia: Key Clinical Concepts for the FRCA and EDA, E.T. Gilbert-Kawai and M.D. 

Wittenberg, Editors. 2014, Cambridge University Press: Cambridge. p. 19-20. 

48. Markesteijn, A.P., et al., A new non-linear two-time-level Central Leapfrog scheme 

in staggered conservation–flux variables for fluctuating hydrodynamics equations with GPU 

implementation. Computer Methods in Applied Mechanics and Engineering, 2014. 281: p. 

29-53. 

49. Huang, W., Z. Lin, and W.F. van Gunsteren, Validation of the GROMOS 54A7 

Force Field with Respect to β-Peptide Folding. Journal of Chemical Theory and Computation, 

2011. 7(5): p. 1237-1243. 

50. Einstein, A., On the Motion of Small Particles Suspended in Liquids at 

RestRequired by the Molecular-Kinetic Theory of Heat. Annalen der Physik, 1905. 322: p. 

549-560. 

51. Dünweg, B. and K. Kremer, Molecular dynamics simulation of a polymer chain in 

solution. The Journal of Chemical Physics, 1993. 99(9): p. 6983-6997. 

52. Kang, K., et al., DNA-based highly tunable particle focuser. Nature 

Communications, 2013. 4(1): p. 2567. 

53. Kim, Y.W., et al., Inertial-microfluidic radial migration in solid/liquid two-phase 

flow through a microcapillary: Particle equilibrium position. Experiments in Fluids, 2011. 

51(3): p. 723-730. 

54. Schonberg, J.A. and E.J. Hinch, Inertial migration of a sphere in Poiseuille flow. 

Journal of Fluid Mechanics, 1989. 203: p. 517-524. 

55. Kim, Y.W. and J.Y. Yoo, Transport of solid particles in microfluidic channels. 

Optics and Lasers in Engineering, 2012. 50(1): p. 87-98. 

56. Liot, O., et al., Transport of nano-objects in narrow channels: influence of 

Brownian diffusion, confinement and particle nature. Journal of Physics: Condensed Matter, 

2018. 30(23): p. 234001. 

57. Li, F., I.A. Korotkin, and S.A. Karabasov, Rheology of Water Flows Confined 

between Multilayer Graphene Walls. Langmuir, 2020. 36(20): p. 5633-5646. 

58. Hood, K., S. Lee, and M. Roper, Inertial migration of a rigid sphere in 



 

31 

 

three-dimensional Poiseuille flow. Journal of Fluid Mechanics, 2015. 765: p. 452-479. 

59. T. King, S.B., and L. Zalewski, Apocrita—High Performance Computing Cluster 

for Queen Mary University of London, 2017. 

60. Elrick, D., Source Functions for Diffusion in Uniform Shear Flow. Australian 

Journal of Physics, 1962. 15(3): p. 283-288. 

61. Hess, S. and J.C. Rainwater, Diffusion in a laminar flow: Shear rate dependence of 

correlation functions and of effective transport coefficients. The Journal of Chemical Physics, 

1984. 80(3): p. 1295-1303. 

 

 

Appendix A: Analytical model of molecular diffusion with including the flow effect 

Following [45], the velocity of a diffusing particle is decomposed into the small-scale 

random diffusion velocity 𝑢𝑑, and the large-scale convection velocity component 𝑢𝑐, due to the 

bulk flow effect 

𝐮𝑝 = 𝐮𝑑 + 𝐮𝑐 , (A1) 

where 𝐮𝑐 = (𝑢1𝑐 , 0,0) for the flow in the x1 direction and 𝑢1𝑐 = 𝑢1𝑐(𝒙𝑝(𝑡)) since the particle 

convection speed induced by the flow depends on the particle coordinates in the flow. 

As the next step, ensemble averaging over different realisations corresponding to different initial 

coordinates of water atoms in the MD simulation domain after the equilibration step, < > is 

introduced. Due to the random character of the diffusion process, < 𝑢𝑑 >=0, which leads to  

<𝐮𝑝>= <𝐮𝑐>.  

The particle coordinate along flow direction is obtained by integrating Eq. (A1) in time 

𝑥1𝑝(𝑡) = 𝑥1𝑝(0) + ∫ 𝑢1𝑑 ⋅ 𝑑𝑡
′

𝑡

0

+∫ 𝑢1𝑐 ⋅ 𝑑𝑡
′

𝑡

0

(A2) 

which leads to  

⟨Δ𝑥1
2(𝑡)⟩ = ⟨(𝑥1𝑝(𝑡) − 𝑥1𝑝(0))

2
⟩ (A3) 

and which can be further rearranged to 

⟨Δ𝑥1
2(𝑡)⟩ = ⟨(∫ 𝑢1𝑑 ⋅ 𝑑𝑡

′
𝑡

0

+∫ 𝑢1𝑐 ⋅ 𝑑𝑡
′

𝑡

0

)

2

⟩ . (A4) 

Considering that the random diffusion velocity has zero mean, < 𝑢1𝑑 >= 0, and by rearranging 

right-hand side of Eq. (A4), an expression for the Mean Square Displacement (MSD) in the flow 

direction is obtained, 
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⟨Δ𝑥1
2(𝑡)⟩ = ⟨(∫ 𝑢1𝑑

𝑡

0

⋅ 𝑑𝑡′)

2

⟩ + ⟨(∫ 𝑢1𝑐

𝑡

0

⋅ 𝑑𝑡′)

2

⟩ , (A5) 

where ⟨(∫ 𝑢1𝑑 ⋅ 𝑑𝑡
′𝑡

0
)2⟩ = ⟨Δ𝑥2

2(𝑡)⟩  since the flow is homogenous in the 𝑥2 -direction, and 

⟨(∫ 𝑢1𝑐 ⋅ 𝑑𝑡
′𝑡

0
)2⟩ = 𝑢1𝑐

2 𝑡2, wherein the overbar denotes ensemble averaging along the peptide 

trajectory. This leads to  

⟨Δ𝑥1
2(𝑡)⟩ − ⟨Δ𝑥2

2(𝑡)⟩ = 𝑢1𝑐
2 𝑡2. (A6) 

The above equation is identical to the one obtained from the continuum diffusion theory [60, 61]. 

And by introducing the root-mean-square value of the convection velocity, r.m. s. (𝑢1𝑐) = √𝑢1𝑐
2 , 

(A6) is further rearranged to 

r.m. s. (𝑢1𝑐) = √
⟨Δ𝑥1

2(𝑡)⟩ − ⟨Δ𝑥2
2(𝑡)⟩

𝑡2
. (A7) 

Eq. (A7) establishes a relationship between the MSD trajectories in the stream-wise and the 

homogeneous flow direction, 𝑥1  and 𝑥2 , and the effective particle convection velocity, 

r.m. s. (𝑢1𝑐).  

For diffusion in the lateral direction, 𝑥3, the particle migration process can be further 

characterised by the dimensionless diffusion distance φ:  

φ = √
∫ ⟨Δ𝑥3

2(𝑡)⟩𝑑𝑡′
𝑡

0

(
𝐿
2
)
2

∙ 𝑡

(A8) 

where 𝐿 and 𝑡 are the height of the flow channel in the 𝑥3 direction and the simulation time, 

respectively. 


